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Surface growth and crossover behaviour in a restricted 
solid-on-solid model 

J M Kimt, J M Kosterlitz and T Ala-Nissilat 
Department of Physics, Brown University, Providence, RI 02912, USA 

Received 4 Fehuary 1991. in final form 1 2  July 1991 

Abstract. We describe results of numerical simulations of growth in a restricted 
solid-on-solid model. W e  first extract the exponent /3 by comparing t&e surface 
width W(t) - to with a spatially averaged heisht comlation function C(t) .  The 
Latter is shown to give a more accurate estimate for p, even for relatively small 
systems. The exponent x is obtainedfrom the saturationof the interface fluctuations 
in the late time repime. Our results lead to a conjecture of dimension dependent 
exponents ay P ( d )  = l/(d t 1). X ( d )  = 2 / ( d  t 2). In addition, we study time 
dependent crossover phenomena by relaxing the local height constraint, and using 
a noise reduction method in the model. We demonstrate how the effect of such 
crosso~er effects may lead to spurious values of the growth exponents. Finally, we 
discuss OUT results in relation to other discrete models, and the continuum growth 
equations. 

1. Introduction 

Over recent years, there have been considerable efforts in studying various models 
of externally driven growth of clusters and surfaces far from equilibrium (Krug and 
Spohn 1990b). In the simplest possible non-trivial case, such processes may be com- 
pletely determined by the effect of random deposition and subsequent local surface 
diffusion (Edwards and Wilkinson 1982). However, in more realistic models the inter- 
actions between particles on the surface must be taken into account, leading to the 
presence of more complicated nonlinear processes which determine the fluctuations of 
the growing interface (Kardar et a/ 1986) in the Eden model (Eden 1961) or ballistic 
deposition model (Family and Vicsek 1985, Meakin el d 1986). These processes are 
also related through various mappings to other physical problems such as the Burgers’ 
equation (Burgers 1974) in fluid mechanics, or the thermodynamics of directed poly- 
mers in random media (Kardar and Zhang 1987). The nonlinear processes controlling 
these systems are still not completely understood despite their superficially simple 
mathematical representation. In particular, higher dimensional values for the scaling 
exponents in the strong coupling regime of the nonlinearities are still under dispute, 
as we will elucidate in the following. 
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In considering the problem of a driven surface, it is natural to characterize the 
surface by the width W ( L ,  t)  which is defined as the standard deviation of heights, 
i.e. 

W y L ,  t )  = - 1 d r  [h(r,  t )  - h(t)]' L d. 

where h(r,  t )  are the local height variables of the d. = (d - 1)-dimensional interface, 
X ( t )  is their spatiai average, and i is the iinear size oi the substrate. Based on 
computer simulations of growth in various discrete models, it has been found that  
W ( L , t )  obeys the scaling relation (Family and Vicsek 1985) 

t 
W ( L , t )  - LXf(F) (1.2) 

where the scaling function f ( z )  is proportional to zo for z << 1, with p z x / z  
and becomes constant for I > 1. The surface width has been commonly used in 
simulations to obtain estimates for the growth exponents 0 and x. However, the most 
complete current description of a growing interface in the continuum limit has been 
given by Kardar, Parisi and Zhang (KPZ), (1986). The KPZ equation explicitly takes 
into account the relevant nonlinearities associated with surface growth as 

where p is a constant driving force and q is a Gaussian random variable which satisfies 

(1.4) / - I -  *\-,-I ' I , ,  - " r l S , -  _ I \ L I *  ' I \  
,#,(T, &j",,'V , L j ,  = L U " ( I .  - I -  j",' - L , 

with D describing local variations in the deposition rate. In the trivial case U = X G 0, 
the KPZ equation describes a simple uncorrelated random deposition model, for which 
the only relevant exponent p = 1/2. In the case of an ideal interface, for which X 0, 
equation (1.3) can be solved exactly for the height-height correlation function 

to-CO Iim ((h(r,t + t o )  - h(0,  to) ) ' )  - r'xf(rt-"") (1.5) 

with h(r,t) = h ( r , t )  - h( t ) ,  leading to scaling exponents p = (3 - d)/4 and x = 
(3 - d ) / 2  below an upper critical dimension d ,  = 3 (Edwards and Wilkinson 1982). 
Above dc,  the interface is smooth and logarithmically rough at d, with p = 0, while 
z = 2 independent of d .  Finally, in the most general case when both A # 0 and v # 0,  
the KPZ equation has only been solved in d = 2 ,  where p = 1/3 and x = 1/2 (Forster 
et a/ 1977, Huse el a/ 1985, Kardar el  a/ 1986). An invariance of the equation under 
infinitesimal tilt of the interface also yields a relation x + z = 2 between the scaling 
exponents (Medina et  a l  1989). For d 3 3, there have been considerable efforts to 
pin down the scaling exponents. Renormalization group analysis of the KPZ equation 
reveais that the strength of the noniinearity is controiied by the coupiing constant 
g XzD/v3 (Forster e t  a l  1977, Kardar e t  al  1986). For g sufficiently small, the 
interface is ideal with p = 0 and z = 2. However, in the physically interesting strong 
coupling regime, analytic theories (McKane and Moore 1988, Halpin-Healy 1989a, 
Cook and Derrida 1990) and numerical simulations (Meakin et al 1986, Zabolitzky 
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and Stauffer 1986, Wolf and Kertgsz 1987, Kim and Kosterlitz 1989a, Forrest and 
Tang 1990) on various growth models yield results which currently disagree with each 
other. Furthermore, recent simulations in  some discrete growth models have suggested 
the possibility of dynamical 'phase transitions', leading to possible different exponents 
(Yan el a1 1990, Guo el a1 1990, Pellegrini and Jullien 1990). 

In this work, we have undertaken a detailed analysis of numerical simulations in 
the restricted solid-on-solid (RSOS) growth model (Kim and Kosterlitz 1989a). We 

of a well defined scaling regime for the model, which can he used to estimate accurate 
values for the growth exponents. By comparing various definitions for the surface 
width, we show that the spatially averaged height correlation function c(t) yields 
the most accurate and reliable estimates for P, even for relatively small system sizes. 
In the d = 1 + 1 dimension, our results reproduce the exact results for the K P Z  
eqnztion. !E d = 2 +  1, s e  obtain ire=. e~ l r  best d& the resdts fi = 8.25C)*!2.005 and 
x = 0.40f0.01. Takingthe relation x+z = 2 (Meakin et a1 1986, Krug 1987, Medina el 
a1 1989) to  be exact, these results together with our somewhat less accurate estimates 
up to d = 4 + 1 for p ,  lead to  the conjecture of dimension-dependent exponents as 
(Kim and Kosterlitr 1989a) 

dnm-no+.r+n th.+ m;n:m:n-t:nn -<+he D G ~ C  l...:-L+ "--- 4. ..:..4 l..-A- 4- 4h.. mnn..o--nca 
U L I I . " L I O " L Y " C  "..OY L . L L L . L I I . I I a . I I " L L  "L Y I l C  " C 1 6 , L Y  C" I IDYIa I I I . I  .cau3 Y" Y ' l r  ayyc"'nL.rr 

2(d + 1) r ( d )  = - 
d + 2  

This conjecture, although not in agreement with some other simulation results (Meakin 
et a1 1986, Wolf and Kertesz 1987, Forrest and Tang 1990), nevertheless reproduces 
exactly the known limits in d = 1 + 1, and implies that there is no finite upper critical 
dimension (Wolf and Kertesz 1987, Halpin-Healy 1989h). In order to  understand the 
origin of these seemingly different results obtained from simulations of other discrete 
growih models, we reiax ihe height consiraini and iniroduce noise reduciion inro the 
RSOS growth model. This leads to the appearance of strong crossover effects making a 
quantitative determination of the growth exponents difficult. We examine the nature 
of these crossover effects in detail, and discuss our results in relation to the other 
discrete models, and t o  the continuum K P Z  equation. 

2. RSOS g r o w t h  niodel 

The class of models known as solid-on-solid (SOS) models have been extensively studied 
as simple models of the equilibrium properties of surfaces, in particular surface steps. 
The existence of a Kosterlitz-Thouless (1973) roughening transition (RT) on surfaces, 
for example, was first realized in the three-dimensional SOS model (Weeks 1980). The 
characteristic feature of all models within this class is the restriction of fluctuations to 
exclude all configurations with overhangs, bubbles and lattice vacancies. An important 
variation among the SOS models is the RSOS model, in which the differences between 
neighbouring heights of the local columns IAhl are usually restricted to  zero or unity 
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in magnitude. Even with this restriction, the RSOS model still exhibits a RT at  three 
dimensions. 

SOS models have also been studied in the context of non-equilibrium phenomena, 
such as surface growth (Kim and Kosterlitz 1989a, Amar and Family 1990a, Guo ei a /  
1990). However, no conclusive studies have so far been made in order to understand 
the fundamental non-equilibrium properties, or the nature of growth processes in these 
models as we have discussed in the introduction. To address these questions, in this 
work we consider a particularly simple aggregatian model, which we call the restricted 
solid-on-solid growth (GRSOS) model. As described later, we shall present results of 
comprehensive studies of computer simulations for externally driven surface growth in 
this model. 

We define the RSOS surface growth model as a ballistic growth model driven by 
external uncorrelated noise. Particles of height unity are randomly deposited on a 
d, = (d - 1)-dimensional substrate of columns of heights {h i ( t  = 0)} = {O), which 
is initially flat without any thermal fluctuations. The ballistically deposited particles 
are incorporated into the substrate if and only if the height difference between all 
nearest-neighbour columns satisfies the  local RSOS condition IAhl < N, where N is 
a fixed, positive integer. If this condition is not met, the corresponding particle is 
rejected from the system. 

Within this formulation, the crucial parameter in the model is the adjacent column 
height difference restriction N .  In the limit where N + 03, the GRSOS model becomes 
identical to the random deposition model, for which the growth exponent p = 1/2 in all 
dimensions. However, in the opposite limit where N is small, the local restrictions on 
column heights play an important role. In fact, as we shall show later, minimizing the 
height restriction seems to greatly reduce short-wavelength fluctuations and suppress 
lateral growth compared to other ballistic growth models and the Eden (1961) model, 
and thus facilitates reaching the asymptotic growth regime of the model. In fact, 
simple arguments based on the growth of steps reveal that, for the GRSOS model, X 
is negative with a large absolute value while, for the Eden model and other similar 
ballistic growth models, X > 0 (Kim 1989). However, since the sign of X is irrelevant, 
we expect these models to belong to the same universality class. 

J M Kim el a1 

2. I .  Simulaiions of growth exponents 

We have carried out standard Monte Carlo simulations for the GRSOS model for various 
dimensions and values of N,  in order to determine the relevant exponents governing 
the growth process. Most simulations were done for the minimum value of N = 1 
with fully periodic boundary conditions, starting from an initially flat substrate. We 
shall also discuss later the effect of systematically relaxing the height constraint N .  
Time in the simulations is measured in units of the average height A ( t )  ( h , ( t ) ) ,  
where ( ) denotes averaging over spac.e. We note that a somewhat natural definition 
of time tMC is the number of Monte Carlo steps. These differ by small finite size effects 
h ( t M C )  - i + ate where the amplitude a is very small for the RSOS model (Krug and 
Meakin 1990). 

We have monitored the growth process by calculating the width W of the surface 
using two different definitions. The surface width W, on the active sites is defined by 

1 w.' = - (h i  - A)? 
N. i zac t ive  
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where h; is the height of columns in the active zone, and N ,  is the total number of 
columns in the active zone in which particles can be added without breaking the local 
height restriction. Another measure of the surface width is defined on the whole region 
of the substrate by 

where the sum now goes over all column heights of the substrate with a total mean 
height h,  and No = Ld’ is the total number of columns. The scaling properties of W ( t )  
and W,(t) are equal in the limit of very large systems, but our systematic comparisons 
between the two definitions of the width discussed in section 2.1.2 reveal that W in 
equation (2.2) turns out to give better estimates of exponents for systems of given size 
L. 

25 

20 

15 

H(X) 

10 

5 

0 
0 20 40 80 80 100 

X 

Figure 1. Temporal development of fluctuations of the interface { h ; ( t ) )  in d = 1 + 1 
ORSOS model for t = 4,8,20. The inf,erface is initially flat at t = 0. 

In figure 1 we show an example of the topology of the growing surface for N = 
1, d = 1 + 1 and L = 100. Starting from a flat surface, the fluctuations of the 
surface width increase with time and become saturated when the parallel correlation 
length becomes proportional to the size of the system. Depending on the extent of 
these fluctuations, we can divide the growth process in approximately three different 
regimes. 

(i) For very early times t < 1 when the density of deposited particles is low, the 
height restriction plays virtually no role in the deposition process. We then expect 
W ( t )  to he proportional to the random deposition result t’/’. This transient regime 
results from the flat initial surface used in the simulations. 

(ii) For 1 << 1 < L’ we expect the system to be in the scaling region of the 
growth, in which a power law behaviour W(1) - to should be observed, as the parallel 
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correlation length grows as (II(t) - l ’ / ’ .  In this regime the height restriction plays 
a crucial role in determining the temporal development of the fluctuations and the 
exponents. 

(iii) For very late times t > L” the parallel correlation length of the surface has 
saturated and span the size of the system with (11 - L. In this regime the behaviour 
of the surface width is controlled by the roughness exponent x, such that  W ( L )  - LX. 
However, we still expect the height restriction to play an important role in determining 

In order to reliably obtain the scaling exponents P and x ,  we will describe the 
behaviour of the interface in the GRSOS model separately for the regimes (ii) and (iii). 

2.1.1.  Rate of interface growlh. To determine p, the exponent governing the rate of 
growth of the interface width, we have first used the relation of W(t )  .-- I P .  In figure 2 
we display on a logarithmic scale the time dependence of W ( t )  for systems of the sizes 
L = 6 1 4 4 ( d =  1 + 1 ) , 5 1 2 ( d = 2 + 1 ) , 6 4 ( d = 3 + 1 ) , a n d 4 6 ( d = 4 + 1 ) .  Ineach case, 
the minimum value N = 1 was used for the height restriction parameter. A careful 
analysis of the very early time regime reveals a random deposition exponent p = 112 
in all dimensions, which crosses over to another, non-trivial value typically already 
after t 2 4. Using standard least-squares linear fitting to our data,  we can summarize 
our resuits as ioiiows 

J M Kim et a/ 

t,he va!ne of ,y; 

0.332 f ,005 d = l + l  
0.248 i ,005 d = 2 + 1  

d = 3 + 1  
0.155i0.02-11/6 d = 4 + 1  

(2.3) 

The time ranges used in each case are 4 < 1 Q 640 for d = 1 + 1,  4 Q t Q 64 for 
d = 2 +  1 ,  4 < t Q 12 f o r d =  3 +  1 ,  and 4 < 1 < 8 for d = 4 +  1. Ineach case, several 
additional system sizes were used to compute 0. These results are our hest estimates 
of the true size independent exponents, and the result in d = 1 + 1 agrees well with 
the exactly known answer p = 1/3. However, we must note that for the last case of 
d = 4 + 1, the surface width is initially clearly oscillating (see figure 2),  as the surface 
width is small compared to unity, and the substrate size is relatively small. Thus, the 
corresponding estimate for P is not very accurate. Finally, we have also calculated 
W ( t )  for a 128 x 128 triangular substrate in d = 2 + 1 with N = 1,  and estimate 
p = 0.247 f .01, for 4 < t < 32. As expected, this is consistent with the assumption 
that the growth exponents within the model are universal and independent of the 
underlying lattice structure. 

2.1.2. Salumtion of interface puctualions. The roughness exponent x describes the 
saturation of the interfacial fluctuations in the late time regime. As we have discussed 
previously, this occurs when the parallel ‘correlation length’ cII associated with the 
surface becomes comparable to the system size L .  In this late trme regime we can 
then determine x from the relation W ( L )  - LX. The system in this regime has 
become ‘self-critical’ in the same sense as many other dynamical systems, which start 
a t  rest and finally display power law behaviour of fluctuations in a late time steady 
state regime (Bak e l  a/ 1987). Since the surface width is calculated from a fluctuation 
relation (Milchev el a( 1986), we expect W to display lack of self-averaging in the 
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Ln W 

LnT 
Figure 2. Interlace width W ( t )  against time on a logarithmic scale for various 
dimensions. The slope of each curve gives the growth exponent 0, as discussed in 
the text. 

sense that the relative fluctuation (the run-to-run fluctuation of W divided by the 
average of W) remains constant as the system size increases in the regime (iii). This 
has been verified numerically (Kim 1989). Note that ,  in the saturated regime where 
fluctuations are limited by system size, averaging over time and runs are equivalent. 

L n W  

1 .o 

0.5 

0.0 

-0.6 

-1.0 1 2 3 4 6 
Ln L 

Figure 3. Comparison between the two definitions (2.1) and (2.2) for the interface 
width in d = 2 + 1, plotted against system size in the saturated regime (iii). The 
width defined over the whole surface in equation (2.2) gives better scaling behaviour 
for smaller systems. 
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Before computing x from the saturation of the interface width, we performed 
systematic comparisons between the two possible definitions of W .  In figure 3 we 
display a comparison between (2.1) and (2.2) as a function of system size L for d = 
2 +  1,  in the saturated regime. As we can clearly see from the data, W as defined over 
the whole surface, shows better scaling behaviour for small system sizes. In the limit 
of very large L,  both definitions of the width agree, as expected. However, to reliably 
determine x we have used the definition (2.2) in our calculations. 

Ln W 

2 ~ " ' I ' " ' I ' " ' I " " I " " I " "  
- 

- 
1 -  - 

1 2 3 4 5 6 7 
- 1  

Ln L 

Figure 4. Interface width in the saturated regime W ( L )  - LX. The effect of the 
noise reduction paranleter A4 is also shown (cf section 2.2.2). 

Our simulations were restricted to relatively small systems L < 768 for d = 1 + 1 
and L < 128 for d = 2 + 1. The time required to reach the saturated regime is larger 
than about L1.' in d = 1 + 1 and L1.6 in d = 2 + 1 .  In each case, the surface width 
was averaged over 2000 independent runs. In figure 4 we depict the results for W ( L )  
in two and three dimensions on a logarithmic scale. Using again a straight line fit to 
the two curves we obtain the following results : 

d = l + l  N = l  0.50 f 0.01 
0.40 & 0.01 d = 2 + 1  N = l  (2.4) .={ 

The result in d = 2 produces the exact answer x = 112 rather accurately. As expected, 
combining these numbers with our results for 0, the scaling relation Z+X = ,y/P+x = 2 
is satisfied to better than 1% within our numerical accuracy. 

2.1.3. The  height correlation funct ion.  There exists another important quantity, 
which we can use to independently determine the growth exponent p. This is the 
height difference correlation function 

G ( r , t ) =  ( [ h ( z + r , t ) - h ( z , t ) ] ' ) ,  (2.5) 
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12.5 

10.0 

7.5 

G(R) 
5.0 

2.5. 

0.0 
0 10 20 30 40 50 

R 
Figure 5. Height correlation function C(r. t )  plotted at fixed timer t = 5.10,. . . ,40  
against distance r in d = 1 + 1. The saturated values can be used to obtain an 
accurate estimate of 4. 

where ( )- denotes an average over all lattice positions and configurations. Since 
G(r,t) is periodic and G ( r , t )  = G ( - r , t ) ,  we can compute G ( r , t )  on the range 0 < 
r 6 L / 2 .  From the scaling relations for the correlation function: 

for t >> L a ,  and 

for t  <<La,  we can see that a t  a fixed, early t imet << L a ,  C ( r ,  t )  becomes constant for 
trr(t) - t l / z  < r. In figure 5 we show results of numerical calculations of the correlation 
function for t = 5, IO, 15, .. , ,40 as a function of r ,  for L = 512 in d = 1 + 1. The 
asymptotic constant value of the flat region of C; can be used to compute the exponent 
0 by defining an average quantity c(t) as 

- 
G(t)  = (G(r ,  t ) ) ,  (2.8) 

where the spatial average ( ) v  was computed in the range L/4 < r < L / 2  a t  fixed 
t L' to reduce fluctuations. For d = 2 + 1, the spatial average of G ( r , t )  was done 
in four separate directions only to reduce the computing time required. 
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As we can see from the scaling relations (2.6) and (2.7), the average value G(t) - 
t 'p .  Using our data from figure 5, and plotting In[E(t)] against In(t), we obta.in 
,!3 = 0.334& 0.005 in d = 1 + 1, which is again very close to the exact value 1/3. To 
study the finite size effects we did a comprehensive analysis of data for a L = 256 
system in d = 2 + 1, averaged over 100 configurations. Our results suggest that the 
advantage of using this method to determine P is that the asymptotic quantity C(t) 
is virtually independent of the system size in the early time region. Consequently, 
G(t )  scales over a larger time interval than W(t ) ,  and gives generally a much more 
accurate estimate of p even for relatively small systems. Using our best data for the 
larger system in d = 2 + 1, we obtain our most accurate estimate of P: 

- 

p(3) = 0.250 + 0.005. 

We can also use G to find the parallel correlation length ( , , ( t )  by defining it to be 
proportional to the minimum distance T where G(r, t)  reaches its asymptotic value 
G ( t ) .  We tested this by defining a radius r,(t) as G(rc ( t ) ,  t )  = cE(t) where c < 1 is a 
constant. Then, we expect that r , ( t )  - Ell(t) - t ' l ' ,  independently of the value of c. 
We calculated r,(t) for c = 0.5,O.g and 0.95 in d = 1 + 1, and for c = 0.9 in d = 2 + 1. 
In figure 6 we display typical results for d = 1 + 1 and d = 2 + 1. Fitting straight 
lines to this data we obtain the estimates 1 /z  = 0.668 f 0.009 and 0.625 f 0.015, 
respectively, which agree well with our other results. Combining our hest estimates 
for the exponents in d = 2 + 1, x = 0.4 and z = 1.6 we show in figure 7 a check of the 
scaling form of equation (1 2 )  and the agreement is satisfactory. 

- 

Ln 

3.0 

2.6 

2.0 
RC 

i .6 

1 .o 

0.6 

1 2 3 4 
h T  

Figure 6. ~ ~ ( t )  - ,C l l ( f )  against time f o r d  = 1 + 1 and d = 2 +  1, as obtainedfrom 
the height correlation function. The slopes of there curves give an estimate of 1/z. 

Finally, we note that one can define another time correlation function G(l) in the 
salwaled regime such that 

G(t )  ( [ h ( ~ , l ~ + l ) - ' h ( r , t ~ ) ] z ) ~  (2.9) 
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0.3 

0.2 
W/LO" 

0.1 

0 L=16 
+ L=32 
I[ L=64 
+ L=l26 

0.0 
0 0.1 0.2 0.3 

T/L'.' 
Figure 7. Scaling plot in d = 2 +  1 of W(t,L)/LO.' against t/L'.". 

where t o  >> L'. We then expect that G(t)  - t Z p ,  as proposed by Kardar et a/ (1986). 
For purposes of testing, we computed G(t)  for asystem of the size L = 512, in d = 1+1 
and obtained p = 0.332 zt 0.006 for 4 < t < 32. 

Z.l .4 .  Finite size behaviour of the correlation function. To understand our numerical 
results better, according to which the asymptotic valuec( t )  of the correlation function 
yields consistently better results for the time exponent p than W ( t ) ,  we have to 
examine these two quantities in more detail. From the definition of G we obtain 

G ( r , f )  = ([k(r,t) - k(O, t ) ] ' )  = 2W2(t) - Z(k(O,t)k(r,t)) (2.10) 

where h(z,t) = h ( z , t )  - h( t ) .  Then, for a system of infinite size W 2 ( t )  = c ( t ) / 2 .  
However, for finite systems we expect W 2 ( t )  and c(t)/2 to behave differently (Kim 
1989, Forrest e l  a l  1990). Using the result ( Jh (O, t ) i ( r , t )d r )  = 0, it follows that 

W ( t )  = - / d r G ( r , t )  
2 L d .  

(2.11) 

The difference between W 2 ( t )  and c(t) can be obtained approximatelyfrom the known 
scaling behaviour of G ( r , t ) .  Using equation (2.7) for early times, we can estimate the 
integral (2.11) by 

W2(t) = - 2Ld.  J d r G ( r . t ) E I C ( t ) [ l - O ( I ) ( ~ ) d . ] .  2 (2.12) 

This result means that when we use the scaling form of W 2 ( t )  to extract 0, we obtain 
an eflectiue exponent between 1 < tilz < L given by 

(2.13) 
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Figure 8. Time dependence of the height correlation function G(f)/Z(L = 256) and 
theaurfacewidthWZ(f ) (L=512) ind=2+l .  Evenforlargersystems,uaing W(t) 
tends to undrreatimsfe the true exponent 0. 

where C > 0 is a constant. These results indicate that using the interface width always 
tends to underestimate the true value of the exponent p. 

In figure 8 we show a comparison between c(t)/2 and W'(t) plotted against the 
expected power law behaviour tilz, for systems of the sizes L = 256 and 512, respec- 
tively, in d = 2 + 1. There is a clear downward curvature in W a ( t )  at  later times, 
because of the finite size effect. 

2.2. Irrelevant variables and crossover effects during growth 

In the previous section! we have seen that the GRSOS model with the minimum height 
restriction N = 1 seems to yield well defined and accurate values of the growth 
exponents. In fact, the results seem to suggest that ,  if the model is described by 
the strong coupling regime of the KPZ growth equation, the value of the effective 
coupling constant must be large. 

In order to address this question, i t  is then important to determine which features 
in the GRSOS model are responsible for the robust numerical behaviour observed in 
the simulations. To this end, we have performed additional simulations of the model 
by changing the growth restriction parameter N ,  as well as employing some of the 
standard numerical tricks such as the noise reduction method which is believed to 
reduce the intrinsic width in some growth models. This allows us to study the effect 
of irrelevant variables and crossover behaviour in the GRSOS model, and also clarify 
the relation of the model to the continuum KPZ equation. 

2.2.1. EfTect of the height restriction parameter. The height constraint parameter N,  
which directly controls the interface width, has a strong influence on the growth of 
the columns. We performed simulations for various values of N in d = 1 + 1 and 
d = 2 + 1 to study this systematically, and in figure 9 we show a comparison of the 
calculated width W for N = 1 and N = 4 in d = 2 + 1. While the N = 1 curve 
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rapidly approaches its asymptotic behaviour, for N = 4 there is a long initial region 
dominated by the random deposition exponent p = 1/2, followed by a slow crossover 
towards the same asymptotic behaviour as in the case N = 1. This means that 
with increasing value of N,  a typically larger values of the effective exponent pee are 
obtained. For example, using the data shown in figure 9 we obtain p = 0.255f 0.008, 
which is already somewhat larger than our conjectured result p = 1/4. Additional 
simulations in d = 1 + 1 gave very similar results. For any N < 00, the value of N 
oniy changes the short wavelength fluctuations which should be irrelevant as far as the 
scaling exponents are concerned. However, the value of N has drastic effects for the 
effecfive exponents obtained from simulations of smaller systems, where i t  becomes 
difficult to reach the asymptotic behaviour. 

1.5 

1 .o 

Ln 

-0.5 

-1.0 
0 2 4 

LnT 
Figure 9. Effect of the height restriction parameter to the interface width in d = 
2 + I .  For higher d u e s  oi iv, there is a pronounced eariy time random deposition 
regime with = 112, followed by B slow crosso~er. Systemsize used is L = 512. 

2.2.2. Eflecf of fhe noise reducfion method. Wolf and Kertbz (WK) have recently 
introduced a method to reduce the short wavelength fluctuations in the Eden growth 
mode! (Wolf and Kert&z 1987, Kertksz and Wolf 1988). In their noire redudinn 
method, a counter is assigned for each site on the surface. Each time a successful 
attempt is made to grow on a given site, its counter is increased by one instead of 
growing. Actual growth (by a discrete step) takes place only after the value of the 
counter reaches a preassigned value M,  where M is called the noise reduction param- 
eter. This method was used by WK to estimate growth exponents for the Eden model, 
using the idea that as noise reduction is turned on! the intrinsic width is suppressed 
and the dynamic scaling shows up  already for relatively small system sizes. The noise 
reduction method clearly succeeds in reducing the intrinsic width; however, by the 
same token it may increase effective surface tension and parallel correlations in the 
GRSOS model, thus reducing the value of the KPZ coupling constant g and leading to 
complicated crossover behaviour (Wolf and Kertbz 1989, Kim and Kosterlitz 1989b). 
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We investigated the effect of the noise reduction method on the GRSOS model by 
applying the algorithm in a straightforward manner during growth. In figure 4 we 
show for comparison the effect of increasing M from its default value ( M  = 1) up to 
M = 8 in d = 2 + 1. The surface width is clearly reduced, but instead of showing 
the expected scaling behaviour with x = 0.4, the curves for higher M do not appear 
to be in the scaling regime for the system sizes studied. In figure 10, we show a 
series of curves in d = 1 + 1 with increasing value of M ,  up to M = 8. A detailed 
examination of the early time behaviour reveals pronounced oscillations of the surface 
width, as increasing M tends to emphasize layerwise growth. This also yields an 
effective value of f l  which, for a given time interval, decreases with increasing value 
of M .  The curves of figure 10 are due to competition between a crossover from the 
surface tension dominated regime at  short times towards asymptopia and saturation 
due t o  finite size at long times. 

-1 

l , , ~ , l , , , , l , , # ~ I O , , ~  
0 2 4 8 8 

h T  

Figure 10. EfIect of the noise reduction parameter M to the width in d = 1 + 1 for 
L = 512. 

The effect of the noise reduction parameter is readily understood in the limit 
N - 00, i.e. for the random deposition model. Namely, the surface width trivially 
satisfies W Z ( M  = 1, t )  = M W Z ( M , t / M )  where the scaling of time by M is exact. 
Such simple scaling has also been used in the context of other growth models (Wolf 
and KertCsa 1989). However, in the GRSOS and other models, where nonlinear effects 
such as lateral growth are present there is no reason why this scaling should hold. In 
fact, we calculated the saturated surface width as a function of M in d = 1 + 1 and 
obtained W ( M ,  t = m) - l/M0.39, instead of the inverse square root behaviour. This, 
together with the increasing correlations parallel to the substrate, makes it difficult 
to reliably estimate growth exponents using the noise reduction method in the GRSOS 
model. 
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3. General ized GRSOS model with depos i t ion  and evapora t ion  

Our simulation results of the scaling exponents strongly indicate the presence of non- 
linear terms in the GRSOS model, as described by the KPZ equation. The coefficient 
A in the KPZ equation describing lateral growth is the curvature of the inclination 
dependent local growth velocity (Krug 1989). Recently, this quantity has been cal- 
culated numerically for the GRSOS model revealing that X is indeed non-zero, and 
negative (Kim i9x9, Krug and Spohn i990a, Kim et ai i9s0, Ruse e t  ai 1990). As we 
mentioned in section 2,  the same conclusion can be obtained from local step growth 
arguments, leading to the conclusion that the minimum height constraint N = 1 maz- 
imizes 1x1 in the model, leading to a large KPZ coupling constant 9. This conclusion 
is also supported by recent simulations of the finite temperature GRSOS model, where 
A depends on a temperature-like parameter (Amar and Family 199Oa). 

i n e  eiieci 01 me iarerai nonilnearicy and ihe ezececiive suriace tension ierm in ihe 
KPZ equation can be further clarified by generalizing the GRSOS model to allow the 
evaporation ofparticles with the same height constraint N .  I t  can then be shown that 
the lateral growth rate becomes proportional to the difference between the evaporation 
and deposition rates (Kim 1989). Thus, for the pure deposition model of section 2, 
X < 0, while for the symmefric case where the two rates are equal, X should vanish. 

is restored and the A(Vh)* term must disappear (Plischke et al  1987). 

m L ~  .m..L . r I I ~ ~  I L ~ ~ ~ 1  ~ ~ ~ ~ , 1 ~ ~ ~ ~ ~ 1 1 ~ ~  

A--&h..- ...-.. ,.$---:-- &I.:- :a +Le+ :.. +I... I..&&-- "--- &h- --&l--h:,.- "..-_- 1_.. L . 1. 
r . I I " I I I ~ L  .,a, U L  " G C L 1 L 6  U.1D I O  Y L I ( L Y  1.1 I l .C L(lc.UFI c-c, Y 1 1 C  I ~ I I . z C Y I Y L .  Y,.L."LCY'J , I  - - 8 .  
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Figure 11. Interface width of the synumetric GRSOS deposition and evaporation 
model, for which W ( L )  .-. in d = 2 + 1 in the saturated regime. This result 
indicates that for the symmetric model A = 0. 

To verify this, we performed additional simulations for the symmetric adsorption- 
desorption case (without any explicit diffusion events) in d = 1 + 1 and d = 2 + 1. 
Using the surface width in the regime (ii), we obtained for the former case the result 
p = 0.245!~0.008, which agrees well with the exact result of 1/4 for the linear equation, 
Moreover, in the saturated regime the interface should be logarithmically rough in 
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d = 2 + 1 if X E 0. In figure 11 we show W ( L )  plotted against (InL)I/* verifying 
this result. These results indicate, that both X and U are non-zero for the GRSOS 
deposition model suggesting that the strong coupling regime of the K P Z  equation may 
be described by our model. The X = 0 results indicate that there is no remnant of an 
equilibrium roughening transition in the GRSOS model so the discrete column heights 
of the simulations play little part, a t  least in the absence of noise reduction. 

4. Summary and conclusions 

In this work, we have presented a detailed numerical study of growth in the RSOS 
model. In particular, we have done systematic comparisons between various physical 
quantities, which can, in principle, be used to determined the scaling exponents for a 
given system size. Since quantities such as the interface width W(t)  and the correlation 
functions G(t) defined in section 2.1.3 are subject to unknown finite size effects, i t  
is important to use the quantity which is least susceptible to these. In analogy with 
critical phenomena, it is natural to expect that ??(t), which contains only the important 
long wavelength fluctuations, would suffer less from these finite size corrections than 
W ( t )  which contains fluctuations from all length scales. Our results indeed indicate 
(see figure 8) that when limited system sizes are used, the spatially averaged correlation 
function G(t) yields the most reliable results for 0. Moreover, using the surface width 
W ( t )  instead tends to underestimate the true value of p which may explain some 
of the results appearing in the literature. We have also used the saturation of the 
interface fluctuation to determine x independently. Our best data for both exponents 
then leads us to conjecture new, dimension-dependent scaling exponents as given by 
equation (1.6). 

Our results indicate that the GRSOS model is particularly useful in studying the 
role of possible crossover phenomena in discrete growth models. By relaxing the height 
constraint, and introducing noise reduction we can see an immediate deterioration in 
the quality of the observed scaling regime in the model. In particular, the effect 
of increasing the noise reduction parameter M is highly non-trivial, and leads to 
systematically smaller values of p. Thus, the GRSOS model with N = 1 and without 
noise reduction seems to be ‘optimal’ for numerical studies. 

Direct numerical integrations of the K P Z  equation in d = 2 t 1 dimensions have 
given scaling exponents which are distinctly helow our conjecture (Chakrabarti and 
Toral 1989, Guo e l  ol 1990), but a recent study of Amar and Family (1990b) shows 
strong crossover effects for small g and the value of p close to 0.25 in the late time 
regime for large g. However, the relation of the discrete growth models to the contin- 
uum K P Z  equation remains unclear. Moreover, there exists a very large scale simu- 
lation of a hypercube stacking model (Forrest and Tang 1990), which gives a slightly 
s m a l l e r v a l u e o f ~ = O . 2 4 0 ~ 0 . 0 0 1 i n d =  2+1,andalsoasmallerP(4) = 0.180f0.005. 
This simulation was performed running a parallelized code with very large system sizes 
up  to L = 11520 in d = 2 +  1. The small error bar for @(3), would seem to exclude our 
conjectured value of 114. However, the hypercube stacking model can be mapped into 
an RSOS model on three triangular sublattices, with non-trivial next-nearest-neighbour 
height constraints in the sublat,tice (Kim and Kosterlitz 1990, Forrest el al 1990). AS 
we have seen in this work, these additional interactions may introduce non-trivial 
crossover effects, which are difficult to quantify in estimating the exponents. Finally, 
we would like to mention that,  although the exponents of equation (1.6) have recently 

, 
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been shown to follow from a Flory type of argument (Hentschel and Family 1991), we 
believe that additional analytic work, and large scale simulations of well understood 
models are called for in order to reliably determine the possible universal values of the 
scaling exponents. 
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